抽签时先抽和后抽中枪几率是,抽签时先抽和后抽中枪的几率是什么的
抽签时先抽和后抽中签的几率是多少?
都是相等的,对于抽签的人来说,是公平的。
不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
基本规则
1、各地方民间抽签的签诗大部分都是28个签组
成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,因为民间签的数字是以28星宿象来代表的。
60签的数字是以60甲子来表示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。有的人认为100签的数字是根据12月份,150%节气和72候的总和而成的。
2、按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的目的和内容,然后从签筒中任意抽一根签出来(有的地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有的地方称为茭)扔到地上,有一正面一反面的才算是这一签,否则就得重新再抽。
抽签时先抽和后抽的中签机会是均等的吗?
均等,不管谁先抽都是公平的。
我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。
其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
抽签后抽好还是先抽好?其中的概率问题是怎样的?
抽签是我们在工作和生活中经常会遇到的一个问题,比如买房子要抽签、公司年会要抽奖、街头促销要抽签、就连家务劳动洗完拖地,有的时候也要抽签,而只要抽签就涉及到了一个问题,那就是先抽还是后抽。有人说先抽具有优势,因为先抽的人可以保证奖品不被别人抽走,而有的人则认为后抽有优势,因为只要前面的人没有抽中,那么后面的人抽中奖品的概率就会逐渐提高。到底谁说得对呢?抽签是应该先抽还是后抽呢?这其实是一个概率问题,要说明这个概率问题,我们需要一个实际的例子。我们可以假设现在有四个人要参与抽签,签筒中一共有四个签,其中3个都是白纸一张,而只有一张可以中奖,奖品为海景房一套。我们假设参与抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。A是第一个抽签的,他的中奖概率一目了然,为1/4。我们主要从B说起,B是第二个抽签的人,所以奖品有可能已经被A抽走了,而A中奖的概率为1/4,也就是说A没有将奖品抽走的概率为3/4。而如果A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/4。接下来是C,计算方法和B一样,A和B已经抽了两次,所以奖品仍然没有被抽走的概率为2/4,而如果奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/4。最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。通过上面的计算可知,抽签的顺序与中奖概率之间并没有关系,不管先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。先回答可能会赢得表现的机会,但万一答错很可能会成为一个反面的典型,甚至给领导留下不好的印象。而后回答,虽然有可能丧失表现的机会,可如果前面的人都答错了,自己可能会幸免于难,因为领导通常不会有耐心听完所有人的答案。那么先答还是后答呢?这是一个不同于抽签的概率问题。为了让问题便于说明,我们只举一个两个人的例子来进行说明。我们将回答问题的两个人命名为A和B,字母的顺序对应着他们回答问题的顺序。就让是要回答问题,那么问题的难易程度就是一个关键数据,我们假设所面临的问题难度适中,答对的概率为50%。A如果想要胜出,那么首先自己要答对问题,而同时又要保证B没有答对,所以他胜出的概率就是50%乘以B胜出的概率。再来看B,在A没有答对问题的情况下,B后答,答对了问题就获得了胜利,所以B胜出的概率就是1减去A胜出的概率,这就形成了一个方程组,求解得出A获胜的概率是33.3%,而B获胜的概率为66.6%,显然后答更具有优势。当然,这与问题的难易程度是有关系的。通过上面的方程组可知,问题越难,B胜出的概率就越高,而问题越简单,A胜出的概率就越高,但是,不管问题变得多么简单,B胜出的概率永远都不会低于50%,而A获胜的概率永远都不会高于50%,所以不论怎样,后回答永远都是具有优势的。两个人是如此,3个人、4个人、或者是100个人,结论都是没有变化的,比如我们将回答问题的人数提高到3个,同样,问题越是困难,最后回答的人的胜率就越高,而问题越是简单,先回答的人的胜率就越高,但无论问题变得多么的简单,最后一个人的胜率也不会低于33.3%,而前面的两个人的胜率也永远不可能高于33.3%,所以不论回答问题的人有几个,也不论问题的难易程度如何,最后回答的人胜率永远不会低于前面的回答者。抽签先后顺序对抽奖概率到底有没有影响?
有影响的,当后者知道前者的抽签结果时概率就发生变化了,因为这时会出现两种情况,如果前者抽到了后者就没必要抽了,所以概率就为0了,所以要同时公布结果,这样后者才有机会翻牌,如果按顺序翻牌前者翻到了后者连翻的机会都没有,所以按先后顺序抽奖有影响。抽签时,先抽与后抽得中签机会是:
概率相同,但是掌握在谁手里不一定。极端的例子,两个人,抽两个签。只要第一个人抽完了,后一个人也就确定了不用抽了,两个人的概率都是1/2。只不过这个概率都是第一个人产生的,第二个人中不中取决于第一个人的手是不是臭。
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽概率一样。抽签法是将调查总体的每个单位编号,再任意抽取号码,直到抽足样本的方法。抽签原理来自全概率公式,指抽签顺序和中签概率无关。如十张签由10个人抽去,其中有4张难签,每个人抽到难签的概率都是4/10,与抽签的次序无关。抽签时先抽和后抽概率一样吗抽签法又称“抓阄法”,主要应用于总体容量比较小的事务。由于抽签法简单易实施,因此应用非常广泛。抽签原理的例子:比如十万张彩票中只有10个特等奖,则被十万个人抽去,无论次序如何,每个人的中奖概率都是十万分之十,即万分之一。